Brain networks may avoid traffic jams at their busiest intersections by communicating on different frequencies, researchers at Washington University School of Medicine in St. Louis, the University Medical Center at Hamburg-Eppendorf and the University of Tübingen have learned.
Author:
Scientists measure communication between stem cell-derived motor neurons and muscle cells
In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure the communication between stem cell-derived motor neurons and muscle cells in a Petri dish.
Waking embryos before they are born
Under some conditions, the brains of embryonic chicks appear to be awake well before those chicks are ready to hatch out of their eggs. That’s according to an imaging study published online on May 3 in Current Biology, a Cell Press publication, in which researchers woke chick embryos inside their eggs by playing loud, meaningful sounds to them. Playing meaningless sounds to the embryos wasn’t enough to rouse their brains.
Rats recall past to make daily decisions
UCSF scientists have identified patterns of brain activity in the rat brain that play a role in the formation and recall of memories and decision-making. The discovery, which builds on the team’s previous findings, offers a path for studying learning, decision-making and post-traumatic stress syndrome.
Wired for avalanches — and learning
The brain’s neurons are coupled together into vast and complex networks called circuits. Yet despite their complexity, these circuits are capable of displaying striking examples of collective behavior such as the phenomenon known as “neuronal avalanches,” brief bursts of activity in a group of interconnected neurons that set off a cascade of increasing excitation.