‘Housekeeping’ mechanism for brain stem cells discovered

Researchers at Columbia University Medical Center (CUMC) have identified a molecular pathway that controls the retention and release of the brain’s stem cells. The discovery offers new insights into normal and abnormal neurologic development and could eventually lead to regenerative therapies for neurologic disease and injury. The findings, from a collaborative effort of the laboratories of Drs. Anna Lasorella and Antonio Iavarone, were published in the online edition of Nature Cell Biology.

Neuroscientists discover key protein responsible for controlling nerve cell protection

A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made by neuroscientists at the University of Bristol and published in Nature Neuroscience and PNAS, could lead to novel new therapies for stroke and epilepsy.

Cocaine decreases activity of a protein necessary for normal functioning of the brain’s reward system

New research from Mount Sinai Medical Center in New York reveals that repeated exposure to cocaine decreases the activity of a protein necessary for normal functioning of the brain’s reward system, thus enhancing the reward for cocaine use, which leads to addiction. Investigators were also able to block the ability of repeated cocaine exposure, to induce addiction. The findings, published online April 22 in the journal Nature Neuroscience, provide the first evidence of how cocaine changes the shape and size of neuron rewards in a mouse model.