Take your time: Neurobiology sheds light on the superiority of spaced vs. massed learning

(Medical Xpress) — College and cramming – often where’s there’s one, the other is not far behind. That said, however, it has been recognized since the late 1800s that repeated periodic exposure to the same material leads to better retention than does a single en masse session. Nevertheless, the phenomenon’s neurobiological processes have remained poorly understood, although activity-dependent synaptic plasticity – notably long-term potentiation (LTP) of glutamatergic transmission – is believed to enable rapid storage of new information. Recently, researchers at the University of California in Irvine and the Scripps Research Institute in Jupiter, Florida determined that hippocampal activity can enhance LTP through theta burst stimulation (TBS) – but only when the affected synapses receive, after a long delay, a secondary TBS. The researchers describe mechanisms that maximize synaptic changes that optimally encode new memory by requiring long delays learning-related TBS activity.

Inside the brains of jurors: Neuroscientists reveal brain activity associated with mitigating criminal sentences

(Medical Xpress) — When jurors sentencing convicted criminals are instructed to weigh not only facts but also tricky emotional factors, they rely on parts of the brain associated with sympathy and making moral judgments, according to a new paper by a team of neuroscientists. Using brain-imaging techniques, the researchers, including Caltech’s Colin Camerer, found that the most lenient jurors show heightened levels of activity in the insula, a brain region associated with discomfort and pain and with imagining the pain that others feel.

Creativity and human reasoning during decision-making

A hallmark of human intelligence is the ability to efficiently adapt to uncertain, changing and open-ended environments. In such environments, efficient adaptive behavior often requires considering multiple alternative behavioral strategies, adjusting them, and possibly inventing new ones. These reasoning, learning and creative abilities involve the frontal lobes, which are especially well developed in humans compared to other primates. However, how the frontal function decides to create new strategies and how multiple strategies can be monitored concurrently remain largely unknown.