Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

(Medical Xpress) — A research team in Taiwan has succeeded in isolating two nerve cells in fruit fly brains that are believed to be the major players in allowing for the formation of long term memories. Furthermore, they’ve also found the genes that appear to be essential in creating related proteins that allow such memories to be saved. They have published a paper describing their work in Science.

FDA-approved drug rapidly clears amyloid from the brain, reverses Alzheimer’s symptoms in mice

Neuroscientists at Case Western Reserve University School of Medicine have made a dramatic breakthrough in their efforts to find a cure for Alzheimer’s disease. The researchers’ findings, published in the journal Science, show that use of a drug in mice appears to quickly reverse the pathological, cognitive and memory deficits caused by the onset of Alzheimer’s. The results point to the significant potential that the medication, bexarotene, has to help the roughly 5.4 million Americans suffering from the progressive brain disease.

Researchers develop gene therapy to boost brain repair for demyelinating diseases

(Medical Xpress) — Our bodies are full of tiny superheroes—antibodies that fight foreign invaders, cells that regenerate, and structures that ensure our systems run smoothly. One such structure is myelin—a material that forms a protective, insulating cape around the axons of our nerve cells so that they can send signals quickly and efficiently. But myelin, and the specialized cells called oligodendrocytes that make it, become damaged in demyelinating diseases like multiple sclerosis (MS), leaving neurons without their myelin sheaths. As a consequence, the affected neurons can no longer communicate correctly and are prone to damage. Researchers from the California Institute of Technology (Caltech) now believe they have found a way to help the brain replace damaged oligodendrocytes and myelin.