Global network activity in the brain modulates local neural circuitry via calcium signaling in non-neuronal cells called astrocytes (Fig. 1), according to research led by Hajime Hirase of the RIKEN Brain Science Institute. The finding clarifies the link between two important processes in the brain.
Motivation
Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain’s cerebral cortex
Neurons are arranged in periodic patterns that repeat over large distances in two areas of the cerebral cortex, suggesting that the entire cerebral cortex has a stereotyped organization, reports a team of researchers led by Toshihiko Hosoya of the RIKEN Brain Science Institute. The entire cortex has a stereotypical layered structure with the same cell types arranged in the same way, but how neurons are organized in the other orientationparallel to the brains surfaceis poorly understood.
Why do people choke when the stakes are high?
In sports, on a game show, or just on the job, what causes people to choke when the stakes are high? A new study by researchers at the California Institute of Technology (Caltech) suggests that when there are high financial incentives to succeed, people can become so afraid of losing their potentially lucrative reward that their performance suffers.
The music of the (hemi)spheres sheds new light on schizophrenia
In 1619, the pioneering astronomer Johannes Kepler published Harmonices Mundi in which he analyzed data on the movement of planets and asserted that the laws of nature governing the movements of planets show features of harmonic relationships in music. In so doing, Kepler provided important support for the, then controversial, model of the universe proposed by Copernicus.
Virtual reality allows researchers to measure brain activity during behavior at unprecedented resolution
Researchers have developed a new technique which allows them to measure brain activity in large populations of nerve cells at the resolution of individual cells. The technique, reported today in the journal Nature, has been developed in zebrafish to represent a simplified model of how brain regions work together to flexibly control behaviour.