People often wonder if computers make children smarter. Scientists at the University of California, Berkeley, are asking the reverse question: Can children make computers smarter? And the answer appears to be yes.
Neuroscience
New research advances understanding of size perception
Neuroscientists from Western University have taken the all-important first step towards understanding the neural basis of size constancy or the ability to see an object as having the same size despite the fact that its image on the retina changes constantly with viewing distance.
Cracking brain memory code
(Medical Xpress) — Despite a century of research, memory encoding in the brain has remained mysterious. Neuronal synaptic connection strengths are involved, but synaptic components are short-lived while memories last lifetimes. This suggests synaptic information is encoded and hard-wired at a deeper, finer-grained molecular scale.
Mathematical model describes the collaboration of individual neurons
How do neurons in the brain communicate with each other? One common theory suggests that individual cells do not exchange signals among each other, but rather that exchange takes place between groups of cells. Researchers from Japan, the United States and Germany have now developed a mathematical model that can be used to test this assumption. Their results have been published in the current issue of the journal PLoS Computational Biology.
Discovery of hair-cell roots suggests the brain modulates sound sensitivity
The hair cells of the inner ear have a previously unknown “root” extension that may allow them to communicate with nerve cells and the brain to regulate sensitivity to sound vibrations and head position, researchers at the University of Illinois at Chicago College of Medicine have discovered. Their finding is reported online in advance of print in the Proceedings of the National Academy of Sciences.