Of mice and mental models: Neuroscientific implications of risk-optimized behavior in the mouse

(Medical Xpress) — Regardless of an organism’s biological complexity, every encephalized animal continuously makes under-informed behavioral choices that can have serious consequences. Despite its ubiquity, however, there’s a long-standing question about its neurological basis – namely, whether these choices are made through probabilistic world models constructed by the brain, or by reinforcement of learned associations. Recently, however, scientists in the Department of Psychology at Rutgers University found that reinforcement cannot account for the rapidity with which mice modify their behavior when the chance of a given phenomenon changes. The researchers say this indicates that mice may have primordially-evolved neural capabilities to represent likelihood and perform calculations that optimize their resulting behavior – and therefore that such genetic mechanisms can be investigated and manipulated by genetic and other procedures.

The auditory cortex adapts agilely with concentration

The birth of sensory perception on the human cerebral cortex is yet to be fully explained. The different areas on the cortex function in cooperation, and no perception is the outcome of only one area working alone. In his doctoral dissertation for the Department of Biomedical Engineering and Computational Science in Aalto University Jaakko Kauramäki shows that the auditory cortex is not left to its own devices.