A new study, using brain imaging technology, reveals structural adaptations in short-track speed skaters’ brains which are likely to explain their extraordinary balance and co-ordination skills. The work by Im Joo Rhyu from the Korea University College of Medicine, and colleagues, is published online in Springer’s journal Cerebellum.
javascript
Neuroscientists link brain-wave pattern to energy consumption
Different brain states produce different waves of electrical activity, with the alert brain, relaxed brain and sleeping brain producing easily distinguishable electroencephalogram (EEG) patterns. These patterns change even more dramatically when the brain goes into certain deeply quiescent states during general anesthesia or a coma.
Research links ‘brain waves’ to cognition, attention and diagnosing disorders
Professor Jason Mattingley, Foundation Chair in Cognitive Neuroscience at The University of Queensland, released his findings into brain waves’ at the Australian Neuroscience Society’s (ANS) annual conference last week.
Study shows Alzheimer’s disease may spread by ‘jumping’ from one brain region to another
For decades, researchers have debated whether Alzheimer’s disease starts independently in vulnerable brain regions at different times, or if it begins in one region and then spreads to neuroanatomically connected areas. A new study by Columbia University Medical Center (CUMC) researchers strongly supports the latter, demonstrating that abnormal tau protein, a key feature of the neurofibrillary tangles seen in the brains of those with Alzheimer’s, propagates along linked brain circuits, “jumping” from neuron to neuron.
Dyslexia-linked genetic variant decreases midline crossing of auditory pathways
Finnish scientists have found that a rare dyslexia-linked genetic variant of the ROBO1 gene decreases normal crossing of auditory pathways in the human brain. The weaker the expression of the gene is, the more abnormal is the midline crossing. The results link, for the first time, a dyslexia-susceptibility gene to a specific sensory function of the human brain. This collaborative study between Aalto University and University of Helsinki in Finland and the Karolinska Insitutet in Sweden was published in the Journal of Neuroscience.