‘Brain-only’ mutation causes epileptic brain size disorder

Scientists have discovered a mutation limited to brain tissue that causes hemimegalencephaly (HMG), a condition where one half of the brain is enlarged and dysfunctional, leading to intellectual disability and severe epilepsy. The research, published by Cell Press in the April 12 issue of Neuron, has broad significance as a potential model for other complex neuropsychiatric diseases that may also be caused by “brain-only” mutations.

Primitive consciousness emerges first as you awaken from anesthesia

Awakening from anesthesia is often associated with an initial phase of delirious struggle before the full restoration of awareness and orientation to one’s surroundings. Scientists now know why this may occur: primitive consciousness emerges first. Using brain imaging techniques in healthy volunteers, a team of scientists led by Adjunct Professor Harry Scheinin, M.D. from the University of Turku, Finland in collaboration with investigators from the University of California, Irvine, have now imaged the process of returning consciousness after general anesthesia. The emergence of consciousness was found to be associated with activations of deep, primitive brain structures rather than the evolutionary younger neocortex.

Early warning system for seizures could cut false alarms

Epilepsy affects 50 million people worldwide, but in a third of these cases, medication cannot keep seizures from occurring. One solution is to shoot a short pulse of electricity to the brain to stamp out the seizure just as it begins to erupt. But brain implants designed to do this have run into a stubborn problem: too many false alarms, triggering unneeded treatment. To solve this, Johns Hopkins biomedical engineers have devised new seizure detection software that, in early testing, significantly cuts the number of unneeded pulses of current that an epilepsy patient would receive.

Molecular imaging links systemic inflammation with depression

New research published in the April issue of The Journal of Nuclear Medicine reveals that systemic inflammation causes an increase in depressive symptoms and metabolic changes in the parts of the brain responsible for mood and motivation. With this finding, researchers can begin to test potential treatments for depression for patients that experience symptoms that are related to inflammation in the body or within the brain.

Human attention to a particular portion of an image alters the way the brain processes visual cortex responses to that i

Our ability to ignore some, but not other stimuli, allows us to focus our attention and improve our performance on a specific task. The ability to respond to visual stimuli during a visual task hinges on altered brain processing of responses within the visual cortex at the back of the brain, where visual information is first received from the eyes. How this occurs was recently demonstrated by an international team of researchers led by Justin Gardner at the RIKEN Brain Science Institute in Wako, Japan.