A protein that has shown early promise in preventing the loss of muscle function in mouse models of Duchenne muscular dystrophy, has been found in a new study to be a key player in the process of joining nerves to muscles.
neuroscience
Neurobiologists identify animal model for a deadly human metabolic disorder
In medical research, finding a reliable and cost-effective animal model can greatly enhance success in identifying disease mechanisms and genetic pathways, potentially cutting years off drug testing regimes and development of new treatment strategies.
Researchers develop gene therapy to boost brain repair for demyelinating diseases
(Medical Xpress) — Our bodies are full of tiny superheroesantibodies that fight foreign invaders, cells that regenerate, and structures that ensure our systems run smoothly. One such structure is myelina material that forms a protective, insulating cape around the axons of our nerve cells so that they can send signals quickly and efficiently. But myelin, and the specialized cells called oligodendrocytes that make it, become damaged in demyelinating diseases like multiple sclerosis (MS), leaving neurons without their myelin sheaths. As a consequence, the affected neurons can no longer communicate correctly and are prone to damage. Researchers from the California Institute of Technology (Caltech) now believe they have found a way to help the brain replace damaged oligodendrocytes and myelin.
CD97 gene expression and function correlate with WT1 protein expression and glioma invasiveness
Researchers at Virginia Commonwealth University Medical Center’s VCU Massey Cancer Center and Harold F. Young Neurosurgical Center (Richmond, VA) and Old Dominion University (Norfolk, VA) have discovered that suppression of Wilms tumor 1 protein (WT1) results in downregulation of CD97 gene expression in three glioblastoma cell lines and reduces the characteristic invasiveness exhibited by glial tumor cells. This finding is announced in the article, “Novel report of expression and function of CD97 in malignant gliomas: correlation with Wilms tumor 1 expression and glioma cell invasiveness,” by Archana Chidambaram, Ph.D., and colleagues, published online ahead of print today in the Journal of Neurosurgery. Although further studies must be performed, the authors propose that CD97 may prove to be a new target for anti-glioma therapies.
Visual working memory not as specialized in the brain as visual encoding, study finds
Researchers have long known that specific parts of the brain activate when people view particular images. For example, a region called the fusiform face area turns on when the eyes glance at faces, and another region called the parahippocampal place area does the same when a person looks at scenes or buildings. However, it’s been unknown whether such specialization also exists for visual working memory, a category of memory that allows the brain to temporarily store and manipulate visual information for immediate tasks. Now, scientists have found evidence that visual working memory follows a more general pattern of brain activity than what researchers have shown with initial visual activity, instead activating a more diffuse area in the front of the brain for all categories of visual stimuli.