Human attention to a particular portion of an image alters the way the brain processes visual cortex responses to that i

Our ability to ignore some, but not other stimuli, allows us to focus our attention and improve our performance on a specific task. The ability to respond to visual stimuli during a visual task hinges on altered brain processing of responses within the visual cortex at the back of the brain, where visual information is first received from the eyes. How this occurs was recently demonstrated by an international team of researchers led by Justin Gardner at the RIKEN Brain Science Institute in Wako, Japan.

Take your time: Neurobiology sheds light on the superiority of spaced vs. massed learning

(Medical Xpress) — College and cramming – often where’s there’s one, the other is not far behind. That said, however, it has been recognized since the late 1800s that repeated periodic exposure to the same material leads to better retention than does a single en masse session. Nevertheless, the phenomenon’s neurobiological processes have remained poorly understood, although activity-dependent synaptic plasticity – notably long-term potentiation (LTP) of glutamatergic transmission – is believed to enable rapid storage of new information. Recently, researchers at the University of California in Irvine and the Scripps Research Institute in Jupiter, Florida determined that hippocampal activity can enhance LTP through theta burst stimulation (TBS) – but only when the affected synapses receive, after a long delay, a secondary TBS. The researchers describe mechanisms that maximize synaptic changes that optimally encode new memory by requiring long delays learning-related TBS activity.

Newborn screening for DMD shows promise as an international model

Investigators at Nationwide Children’s Hospital, working with the DNA Sequencing Core Facility at the University of Utah, have developed an approach to newborn screening (NBS) for the life-threatening genetic disorder, Duchenne muscular dystrophy (DMD) and potentially other muscular dystrophies. As a model for NBS, the approach published online in January in the Annals of Neurology provides evidence that this approach could be implemented if approved by regulatory bodies at a state level or alternatively through the Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children.