(Medical Xpress) — Regardless of an organism’s biological complexity, every encephalized animal continuously makes under-informed behavioral choices that can have serious consequences. Despite its ubiquity, however, there’s a long-standing question about its neurological basis – namely, whether these choices are made through probabilistic world models constructed by the brain, or by reinforcement of learned associations. Recently, however, scientists in the Department of Psychology at Rutgers University found that reinforcement cannot account for the rapidity with which mice modify their behavior when the chance of a given phenomenon changes. The researchers say this indicates that mice may have primordially-evolved neural capabilities to represent likelihood and perform calculations that optimize their resulting behavior – and therefore that such genetic mechanisms can be investigated and manipulated by genetic and other procedures.
psychology
Genetic ‘reset switch’ enables signaling pathway to induce multiple developmental outcomes for olfactory neurons
Within the nervous system, a handful of signaling pathways modulate development of a cornucopia of different neuronal subtypes. Even small alterations in neuron differentiation pathways can disrupt subsequent circuit organization and catalyze the genesis of neurological disorders, explains Adrian Moore of the RIKEN Brain Science Institute in Wako.
No new neurons in the human olfactory bulb
(Medical Xpress) — Research from Karolinska Institutet shows that the human olfactory bulb – a structure in the brain that processes sensory input from the nose – differs from that of other mammals in that no new neurons are formed in this area after birth. The discovery, which is published in the scientific journal Neuron, is based on the age-determination of the cells using the carbon-14 method, and might explain why the human sense of smell is normally much worse than that of other animals.
Treating pain with transplants
A new study finds that transplanting embryonic cells into adult mouse spinal cord can alleviate persistent pain. The research, published by Cell Press in the May 24th issue of the journal Neuron, suggests that reduced pain results from successful integration of the embryonic cells into the host spinal cord. The findings open avenues for clinical strategies aimed not just at treating the symptoms of chronic debilitating pain, but correcting the underlying disease pathology.
Reverse engineering epilepsy’s ‘miracle’ diet
For decades, neurologists have known that a diet high in fat and extremely low in carbohydrates can reduce epileptic seizures that resist drug therapy. But how the diet worked, and why, was a mysteryso much so that in 2010, The New York Times Magazine called it “Epilepsy’s Big, Fat Miracle.”