Ask the average person the street how the brain develops, and they’ll likely tell you that the brain’s wiring is built as newborns first begin to experience the world. With more experience, those connections are strengthened, and new branches are built as they learn and grow.
stress
Study finds little cognitive benefit from soy supplements for older women
In a new study of the effects of soy supplements for postmenopausal women, researchers at the Stanford University School of Medicine and the USC Keck School of Medicine found no significant differences positive or negative in overall mental abilities between those who took supplements and those who didn’t.
Hands-on research: Neuroscientists show how brain responds to sensual caress
A nuzzle of the neck, a stroke of the wrist, a brush of the kneethese caresses often signal a loving touch, but can also feel highly aversive, depending on who is delivering the touch, and to whom. Interested in how the brain makes connections between touch and emotion, neuroscientists at the California Institute of Technology (Caltech) have discovered that the association begins in the brain’s primary somatosensory cortex, a region that, until now, was thought only to respond to basic touch, not to its emotional quality.
Noninvasive brain stimulation shown to impact walking patterns
In a step towards improving rehabilitation for patients with walking impairments, researchers from the Kennedy Krieger Institute found that non-invasive stimulation of the cerebellum, an area of the brain known to be essential in adaptive learning, helped healthy individuals learn a new walking pattern more rapidly. The findings suggest that cerebellar transcranial direct current stimulation (tDCS) may be a valuable therapy tool to aid people relearning how to walk following a stroke or other brain injury.
Hear to see: New method for the treatment of visual field defects
Patients who are blind in one side of their visual field benefit from presentation of sounds on the affected side. After passively hearing sounds for an hour, their visual detection of light stimuli in the blind half of their visual field improved significantly. Neural pathways that simultaneously process information from different senses are responsible for this effect.